115 research outputs found

    A fast FPTAS for single machine scheduling problem of minimizing total weighted earliness and tardiness about a large common due date

    Get PDF
    We address the single machine scheduling problem to minimize the total weighted earliness and tardiness about a nonrestrictive common due date. This is a basic problem with applications to the just-in-time manufacturing. The problem is linked to a Boolean programming problem with a quadratic objective function, known as the half-product. An approach to developing a fast fully polynomial-time approximation scheme (FPTAS) for the problem is identified and implemented. The running time matches the best known running time for an FPTAS for minimizing a half-product with no additive constan

    Using weight decision for decreasing the price of anarchy in selfish bin packing games

    Get PDF
    A selfish bin packing game is a variant of the classical bin packing problem in a game theoretic setting. In our model the items have not only a size but also a nonnegative weight. Each item plays the role of a selfish agent, and any agent/item pays some cost for being in a bin. The cost of a bin is 1, and this cost is shared among the items being in the bin, proportionally to their weight. A packing of the items into bins is called a Nash equilibrium if no item can decrease its cost by moving to another bin. In this paper we present two different settings for the weights which provide better values for the price of anarchy (PoA) than previous settings investigated so far. The improved PoA is not bigger than 16/11 approximate to 1.4545. Moreover, we give a general lower bound for the price of anarchy which holds for all possible choices of the weights. (C) 2019 Elsevier B.V. All rights reserved

    Restricted assignment scheduling with resource constraints

    Get PDF
    We consider parallel machine scheduling with job assignment restrictions, i.e., each job can only be processed on a certain subset of the machines. Moreover, each job requires a set of renewable resources. Any resource can be used by only one job at any time. The objective is to minimize the makespan. We present approximation algorithms with constant worst-case bound in the case that each job requires only a fixed number of resources. For some special cases optimal algorithms with polynomial running time are given. If any job requires at most one resource and the number of machines is fixed, we give a PTAS. On the other hand we prove that the problem is APX-hard, even when there are just three machines and the input is restricted to unit-time jobs. (C) 2018 Published by Elsevier B.V

    Fast approximation schemes for Boolean programming and scheduling problems related to positive convex Half-Product

    Get PDF
    We address a version of the Half-Product Problem and its restricted variant with a linear knapsack constraint. For these minimization problems of Boolean programming, we focus on the development of fully polynomial-time approximation schemes with running times that depend quadratically on the number of variables. Applications to various single machine scheduling problems are reported: minimizing the total weighted flow time with controllable processing times, minimizing the makespan with controllable release dates, minimizing the total weighted flow time for two models of scheduling with rejection
    corecore